by Christopher Art Hicks
In quantum physics, context isn’t just philosophical—it changes outcomes.
Take the double-slit experiment, a bedrock of quantum theory. When electrons or photons are fired at a screen through two slits, they produce an interference pattern—a sign of wave behavior. But when a detector is placed at the slits to observe which path each particle takes, the interference vanishes. The particles act like tiny marbles, not waves. The mere potential of observation alters the outcome (Feynman 130).
The quantum eraser experiment pushes this further. In its delayed-choice version, even when which-path data is collected but not yet read, the interference is destroyed. If that data is erased, the interference reappears—even retroactively. What you could know changes what is (Kim et al. 883–887).
Then comes Wheeler’s delayed-choice experiment, in which the decision to observe wave or particle behavior is made after the particle has passed the slits. Astonishingly, the outcome still conforms to the later choice—suggesting that observation doesn’t merely reveal, it defines (Wheeler 9–11).
This may sound like retrocausality—the future affecting the past—but it’s more nuanced. In Wheeler’s delayed-choice experiment, the key insight is not that the future reaches back to change the past, but that quantum systems don’t commit to a specific history until measured. The past remains indeterminate until a context is imposed.
It’s less like editing the past, and more like lazy loading in computer science. The system doesn’t generate a full state until it’s queried. Only once a measurement is made—like rendering a webpage element when it scrolls into view—does reality “fill in” the details. Retrocausality implies backward influence. Wheeler’s view, by contrast, reveals temporal ambiguity: the past is loaded into reality only when the present demands it.
Even the Kochen-Specker theorem mathematically proves that quantum outcomes cannot be explained by hidden variables alone; they depend on how you choose to measure them (Kochen and Specker 59). Bell’s theorem and its experimental confirmations also show that no local theory can account for quantum correlations. Measurement settings influence outcomes even across vast distances (Aspect et al. 1804).
And recently, experiments like Proietti et al. (2019) have demonstrated that two observers can witness contradictory realities—and both be valid within quantum rules. This means objective reality breaks down when you scale quantum rules to multiple observers (Proietti et al. 1–6).
Now here’s the kicker: John von Neumann, in Mathematical Foundations of Quantum Mechanics, argued that the wavefunction doesn’t collapse at the measuring device, but at the level of conscious observation. He wrote that the boundary between the observer and the observed is arbitrary; consciousness completes the measurement (von Neumann 420).
Light, Sound, and the Qualia Conundrum
Light and sound are not what they are—they are what we interpret them to be. Color is not in the photon; it’s in the brain’s rendering of electromagnetic frequency. Sound isn’t in air molecules, but in the subjective experience of pressure oscillations.
If decisions—say in a neural network or human brain—are made based on “seeing red” or “hearing C#,” they’re acting on qualia, not raw variables. And no sensor detects qualia—only you do. If observation alone defines reality, and qualia transform data into meaning, then context is not a layer—it’s a pillar.
Which brings us back to von Neumann: the cut between physical measurement and reality doesn’t happen in the machine—it happens in the mind.
If Context Doesn’t Matter…
Suppose context didn’t matter. Then consciousness, memory, perception—none of it would impact outcomes. The world would be defined purely by passive sensors and mechanical recordings. But then what’s the point of qualia? Why did evolution give us feeling and sensation if only variables mattered?
This leads to a philosophical cliff: the solipsistic downslope. If a future observer can collapse a wavefunction on behalf of all others just by seeing it later, then everyone else’s reality depends on someone else’s mind. You didn’t decide. My future quantum observation decided for you. That’s retrocausality, and it’s a real area of quantum research (Price 219–229).
The very idea challenges free will, locality, and time. It transforms the cosmos into a tightly knotted web of potential realities, collapsed by conscious decisions from the future.
Divine Elegance and Interpretive Design
If context doesn’t matter, then the universe resembles a machine: elegant, deterministic, indifferent. But if context does matter—if how you look changes what you see—then we don’t live in a static cosmos. We live in an interpretive one. A universe that responds not just to force, but to framing. Not just to pressure, but to perspective.
Such a universe behaves more like a divine code than a cold mechanism.
Science, by necessity, filters out feeling—because we lack instruments to measure qualia. But that doesn’t mean they don’t count. It means we haven’t yet learned to observe them. So we reason. We deduce. That is the discipline of science: not to deny meaning, but to approach it with method, even if it starts in mystery.
Perhaps the holographic universe theory offers insight. In it, what we see—our projected, 3D world—is just a flattened encoding on a distant surface. Meaning emerges when it’s projected and interpreted. Likewise, perhaps the deeper truths of the universe are encoded within us, not out there among scattered particles. Not in the isolated electron, but in the total interaction.
Because in truth, you can’t just ask a particle a question. Its “answer” is shaped by the environment, by interference, by framing. A particle doesn’t know—it simply behaves according to the context it’s embedded in. Meaning isn’t in the particle. Meaning is in the pattern.
So maybe the universe doesn’t give us facts. Maybe it gives us form. And our job—conscious, human, interpretive—is to see that form, not just as observers, but as participants.
In the end, the cosmos may not speak to us in sentences. But it listens—attentively—to the questions we ask.
And those questions matter.
Works Cited (MLA)
- Aspect, Alain, Philippe Grangier, and Gérard Roger. “Experimental Realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities.” Physical Review Letters, vol. 49, no. 2, 1982, pp. 91–94.
- Feynman, Richard P., et al. The Feynman Lectures on Physics, vol. 3, Addison-Wesley, 1965.
- Kim, Yoon-Ho, et al. “A Delayed Choice Quantum Eraser.” Physical Review Letters, vol. 84, no. 1, 2000, pp. 1–5.
- Kochen, Simon, and Ernst Specker. “The Problem of Hidden Variables in Quantum Mechanics.” Journal of Mathematics and Mechanics, vol. 17, 1967, pp. 59–87.
- Price, Huw. “Time’s Arrow and Retrocausality.” Studies in History and Philosophy of Modern Physics, vol. 39, no. 4, 2008, pp. 219–229.
- Proietti, Massimiliano, et al. “Experimental Test of Local Observer Independence.” Science Advances, vol. 5, no. 9, 2019, eaaw9832.
- von Neumann, John. Mathematical Foundations of Quantum Mechanics. Princeton University Press, 1955.
- Wheeler, John A. “Law Without Law.” Quantum Theory and Measurement, edited by John A. Wheeler and Wojciech H. Zurek, Princeton University Press, 1983, pp. 182–213.

